Highest vectors of representations (total 10) ; the vectors are over the primal subalgebra. | \(-h_{6}-2h_{5}+2h_{3}+h_{1}\) | \(g_{15}+5/9g_{6}+4/9g_{4}+7/9g_{2}+5/9g_{1}\) | \(g_{16}+7/5g_{14}\) | \(-g_{13}+5/7g_{12}\) | \(-g_{25}+10/7g_{24}-4/5g_{23}+g_{22}\) | \(g_{28}+g_{26}\) | \(g_{33}\) | \(g_{34}+4/9g_{30}\) | \(g_{32}\) | \(g_{36}\) |
weight | \(0\) | \(2\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(6\omega_{1}\) | \(8\omega_{1}\) | \(10\omega_{1}\) | \(10\omega_{1}\) | \(10\omega_{1}\) | \(14\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(2\omega_{1}\) | \(4\omega_{1}-6\psi\) | \(4\omega_{1}+6\psi\) | \(6\omega_{1}\) | \(8\omega_{1}\) | \(10\omega_{1}-6\psi\) | \(10\omega_{1}\) | \(10\omega_{1}+6\psi\) | \(14\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{4\omega_{1}-6\psi} \) → (4, -6) | \(\displaystyle V_{4\omega_{1}+6\psi} \) → (4, 6) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0) | \(\displaystyle V_{8\omega_{1}} \) → (8, 0) | \(\displaystyle V_{10\omega_{1}-6\psi} \) → (10, -6) | \(\displaystyle V_{10\omega_{1}} \) → (10, 0) | \(\displaystyle V_{10\omega_{1}+6\psi} \) → (10, 6) | \(\displaystyle V_{14\omega_{1}} \) → (14, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | \(14\omega_{1}\) \(12\omega_{1}\) \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) \(-12\omega_{1}\) \(-14\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}-6\psi\) \(2\omega_{1}-6\psi\) \(-6\psi\) \(-2\omega_{1}-6\psi\) \(-4\omega_{1}-6\psi\) | \(4\omega_{1}+6\psi\) \(2\omega_{1}+6\psi\) \(6\psi\) \(-2\omega_{1}+6\psi\) \(-4\omega_{1}+6\psi\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | \(10\omega_{1}-6\psi\) \(8\omega_{1}-6\psi\) \(6\omega_{1}-6\psi\) \(4\omega_{1}-6\psi\) \(2\omega_{1}-6\psi\) \(-6\psi\) \(-2\omega_{1}-6\psi\) \(-4\omega_{1}-6\psi\) \(-6\omega_{1}-6\psi\) \(-8\omega_{1}-6\psi\) \(-10\omega_{1}-6\psi\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | \(10\omega_{1}+6\psi\) \(8\omega_{1}+6\psi\) \(6\omega_{1}+6\psi\) \(4\omega_{1}+6\psi\) \(2\omega_{1}+6\psi\) \(6\psi\) \(-2\omega_{1}+6\psi\) \(-4\omega_{1}+6\psi\) \(-6\omega_{1}+6\psi\) \(-8\omega_{1}+6\psi\) \(-10\omega_{1}+6\psi\) | \(14\omega_{1}\) \(12\omega_{1}\) \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) \(-12\omega_{1}\) \(-14\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}-6\psi}\oplus M_{2\omega_{1}-6\psi}\oplus M_{-6\psi}\oplus M_{-2\omega_{1}-6\psi}\oplus M_{-4\omega_{1}-6\psi}\) | \(\displaystyle M_{4\omega_{1}+6\psi}\oplus M_{2\omega_{1}+6\psi}\oplus M_{6\psi}\oplus M_{-2\omega_{1}+6\psi}\oplus M_{-4\omega_{1}+6\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) | \(\displaystyle M_{10\omega_{1}-6\psi}\oplus M_{8\omega_{1}-6\psi}\oplus M_{6\omega_{1}-6\psi}\oplus M_{4\omega_{1}-6\psi}\oplus M_{2\omega_{1}-6\psi} \oplus M_{-6\psi}\oplus M_{-2\omega_{1}-6\psi}\oplus M_{-4\omega_{1}-6\psi}\oplus M_{-6\omega_{1}-6\psi}\oplus M_{-8\omega_{1}-6\psi}\oplus M_{-10\omega_{1}-6\psi}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) | \(\displaystyle M_{10\omega_{1}+6\psi}\oplus M_{8\omega_{1}+6\psi}\oplus M_{6\omega_{1}+6\psi}\oplus M_{4\omega_{1}+6\psi}\oplus M_{2\omega_{1}+6\psi} \oplus M_{6\psi}\oplus M_{-2\omega_{1}+6\psi}\oplus M_{-4\omega_{1}+6\psi}\oplus M_{-6\omega_{1}+6\psi}\oplus M_{-8\omega_{1}+6\psi}\oplus M_{-10\omega_{1}+6\psi}\) | \(\displaystyle M_{14\omega_{1}}\oplus M_{12\omega_{1}}\oplus M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}} \oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\oplus M_{-12\omega_{1}} \oplus M_{-14\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}-6\psi}\oplus M_{2\omega_{1}-6\psi}\oplus M_{-6\psi}\oplus M_{-2\omega_{1}-6\psi}\oplus M_{-4\omega_{1}-6\psi}\) | \(\displaystyle M_{4\omega_{1}+6\psi}\oplus M_{2\omega_{1}+6\psi}\oplus M_{6\psi}\oplus M_{-2\omega_{1}+6\psi}\oplus M_{-4\omega_{1}+6\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) | \(\displaystyle M_{10\omega_{1}-6\psi}\oplus M_{8\omega_{1}-6\psi}\oplus M_{6\omega_{1}-6\psi}\oplus M_{4\omega_{1}-6\psi}\oplus M_{2\omega_{1}-6\psi} \oplus M_{-6\psi}\oplus M_{-2\omega_{1}-6\psi}\oplus M_{-4\omega_{1}-6\psi}\oplus M_{-6\omega_{1}-6\psi}\oplus M_{-8\omega_{1}-6\psi}\oplus M_{-10\omega_{1}-6\psi}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) | \(\displaystyle M_{10\omega_{1}+6\psi}\oplus M_{8\omega_{1}+6\psi}\oplus M_{6\omega_{1}+6\psi}\oplus M_{4\omega_{1}+6\psi}\oplus M_{2\omega_{1}+6\psi} \oplus M_{6\psi}\oplus M_{-2\omega_{1}+6\psi}\oplus M_{-4\omega_{1}+6\psi}\oplus M_{-6\omega_{1}+6\psi}\oplus M_{-8\omega_{1}+6\psi}\oplus M_{-10\omega_{1}+6\psi}\) | \(\displaystyle M_{14\omega_{1}}\oplus M_{12\omega_{1}}\oplus M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}} \oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\oplus M_{-12\omega_{1}} \oplus M_{-14\omega_{1}}\) |
2\\ |